27 [9].-Sol Weintraub, Distribution of Primes between 10^{14} and $10^{14}+10^{8}, 6$ page: of computer output deposited in the UMT file together with a text of 3 pages, 1971

The number of primes between 10^{14} and $10^{14}+10^{8}$ is 3102679 . (Riemann's formula gives the estimate 3102104 .)

For each $k=2(2) 600$, these tables list four quantities:
COUNTS \quad RATIOS to $k=2$
GAPS PAIRS ACTUAL THEORY
GAPS are the number of p_{i} in this interval such that $p_{i+1}-p_{i}=k$. PAIRS are the number of p here such that $p+k$ is prime (whether or not it is the next prime). ACTUAL is the ratio

$$
\frac{\operatorname{PAIRS}(k)}{\text { PAIRS (2) }}
$$

and THEORY is that ratio according to the Hardy-Littlewood Conjecture.
Here are several observations. The most popular gap is for $k=6(237524$ specimens). The average gap is, of course, $\ln 10^{14}=32+$. The number of twins $(k=2)$ is 127084 . The first missing gap is $k=332$. The largest gap is 414 and follows the prime $10^{14}+13214473$. The most popular pairs are, obviously, for $k=210$ and 420, namely, 408552 and 406950 specimens, respectively. "Actual" and "Theory" agree closely.

The brief text also mentions triples and quadruples.
See the following references for related tables.

> D. S.

1. D. H. Lehmer, UMT 3, MTAC, v. 13, 1959, pp. 56-57.
2. F. Gruenberger \& G. Armerding, UMT 73, Math. Comp., v. 19, 1965, pp. 503-505.
3. M. F. Jones, M. Lai \& W. J. Blundon, UMT 20, Math. Comp., v. 21, 1967, p. 262.
